AAMC MCAT Science Topics

rearranged into regular order

Physics

Kinematics

Translational Motion (PHY)

- Units and dimensions
- Vectors, components
- Vector addition
- Speed, velocity (average and instantaneous)
- Acceleration

Newton's Laws

Force (PHY)

- Newton's First Law, inertia
- Newton's Second Law (F = ma)
- Newton's Third Law, forces equal and opposite
- Friction, static and kinetic
- Center of mass

Equilibrium (PHY)

- Vector analysis of forces acting on a point object
- Torques, lever arms

Work, Energy, and Power Work (PHY)

- Work done by a constant force: $W = Fd \cos\theta$
- Mechanical advantage
- Work Kinetic Energy Theorem
- Conservative forces

Energy of Point Object Systems (PHY)

- Kinetic Energy: KE = 1/2 mv2; units
- Potential Energy
 - o PE = mgh (gravitational, local)
 - \circ PE = $1/2 kx^2$ (spring)
- Conservation of energy
- Power, units

Simple Harmonic Motion

Periodic Motion (PHY)

- Amplitude, frequency, phase • PE = $1/2 kx^2$ (spring)
- Fluid Mechanics

Fluids (PHY)

- Density, specific gravity
- Buoyancy, Archimedes' Principle
- Hydrostatic pressure
 - o Pascal'sLaw
 - Hydrostatic pressure; $P = \rho gh$ (pressure vs. depth)
- Viscosity: Poiseuille Flow
- Continuity equation $(A \cdot v = \text{constant})$
- Concept of turbulence at high velocities
- Surface tension
- Bernoulli's equation
- Venturi effect, pitot tube

Circulatory System (BIO)

Arterial and venous systems; pressure and flow characteristics

Waves

- Transverse and longitudinal waves
- Wavelength and propagation speed

Sound (PHY)

- Production of sound
- Relative speed of sound in solids, liquids, and gases
- Intensity of sound, decibel units, log scale
- Attenuation (Damping)
- Doppler Effect
 - o moving sound source or observer
 - o reflection of sound from a moving object
- Pitch
- Resonance in pipes and strings
- Ultrasound
- Shock waves

Heat and Temperature

- Measurement of heat changes (calorimetry)
 - o Heat capacity, specific heat

- o Heat capacity, specific heat
- Heat transfer conduction, convection, radiation (PHY)

The Ideal Gas and Kinetic Theory

- Gas Phase (GC, PHY)
 Absolute temperature, (K) Kelvin Scale
 - Pressure, simple mercury barometer
 - Molar volume at 0°C and 1 atm = 22.4 L/mol
 - Ideal gas
 - o Definition
 - Ideal Gas Law: PV = nRT
 - o Boyle's Law: PV = constant
 - o Charles' Law: V/T= constant
 - o Avogadro's Law: V/n = constant
 - Kinetic Molecular Theory of Gases
 - Heat capacity at constant volume and at constant pressure (PHY)
 - o Boltzmann's Constant (PHY)
 - Deviation of real gas behavior from Ideal Gas Law
 - o Qualitative
 - o Quantitative (Van der Waals' Equation)
 - Partial pressure, mole fraction
 - Dalton's Law relating partial pressure to composition

■ The First Law of Thermodynamics

- Thermodynamic system state function
- Zeroth Law concept of temperature
- First Law conservation of energy in thermodynamic processes
- PV diagram: work done = area under or enclosed by curve (PHY)

The Second Law of Thermodynamics

- Second Law concept of entropy
 - o Entropy as a measure of "disorder"
 - o Relative entropy for gas, liquid, and crystal states

Electricity

Electrostatics (PHY)

- Charge, conductors, charge conservation
- Insulators
- Coulomb's Law
- Electric field E
 - o Field lines
 - o Field due to charge distribution
- Electrostatic energy, electric potential at a point in space

DC Current

Circuit Elements (PHY)

- Current $I = \Delta Q/\Delta t$, sign conventions, units
- Electromotive force, voltage
- Resistance
 - \circ Ohm's Law: I=V/R
 - Resistors in series
 - Resistors in parallel
 - o Resistivity: $\rho = R \cdot A/L$
- Capacitance
 - Parallel plate capacitor
 - Energy of charged capacitor
 - Capacitors in series
 - Capacitors in parallel
 - o Dielectrics
- Conductivity
 - o Metallic
 - o Electrolytic
- Meters

Magnetism

- Magnetism (PHY)
 - Definition of magnetic field B
 Motion of charged particles in magnetic fields; Lorentz force
 - Motion of charged particles in mag
 Paramagnetism and diamagnetism

The Properties of Light

- Properties of electromagnetic radiation
 - Velocity equals constant c, in vacuo
 - o Perpendicularly oscillating electric and magnetic fields
 - o Direction of propagation is perpendicular to both
- Classification of electromagnetic spectrum, photon energy E = hf
- Visual spectrum, color
- Reflection from plane surface: angle of incidence equals angle of

reflection

- Refraction, refractive index n; Snell's law: $n1 \sin \theta 1 = n2 \sin \theta 2$
- Dispersion, change of index of refraction with wavelength
- Conditions for total internal reflection
- Polarization of light: linear and circular

Geometric Optics

Geometrical Optics (PHY)

- Spherical mirrors
 - o Center of curvature
 - o Focal length
 - o Real and virtual images
- Thin lenses
 - o Converging and diverging lenses
 - Use of formula 1/p + 1/q = 1/f, with sign conventions
 - Lens strength, diopters
- Combination of lenses
- Lens aberration
- Optical Instruments, including the human eye

Wave Optics

Light, Electromagnetic Radiation (PHY)

- Concept of Interference; Young Double-slit Experiment
- Thin films, diffraction grating, single-slit diffraction
- Other diffraction phenomena, X-ray diffraction
- Modern Physics Also See Atomic Theory
 - Heisenberg Uncertainty Principle
 - Photoelectric effect

Nuclear Physics

- Neutrons, protons, isotopes
- Nuclear forces, binding energy
- Radioactive decay
 - ο α , β , γ decay
 - o Half-life, exponential decay, semi-log plots

General Chemistry

Atomic Theory

Atomic Nucleus (PHY, GC)

- Atomic number, atomic weight
- Mass spectrometer

Electronic Structure (PHY, GC)

- Orbital structure of hydrogen atom
- \vdash rincipal quantum number n, # of electrons per orbital (GC)
- Ground state, excited states
- Absorption and emission line spectra
- Use of Pauli Exclusion Principle
- Conventional notation for electronic structure (GC)
- Bohr atom
- Effective nuclear charge (GC)

Periodic Trends

The Periodic Table - Classification of Elements into Groups by Electronic Structure (GC)

- Alkali metals
- Alkaline earth metals: their chemical characteristics
- Halogens: their chemical characteristics
- Noble gases: their physical and chemical characteristics
- Transition metals
- Representative elements
- Metals and non-metals
- Oxygen group

The Periodic Table - Variations of Chemical Properties with Group and Row (GC)

- Valence electrons
- First and second ionization energy
 - Definition
 - Prediction from electronic structure for elements in different groups or rows
- Electron affinity
 - o Definition
 - Variation with group and row
- Electronegativity
 - o Definition
 - Comparative values for some representative elements and important groups

- Electron shells and the sizes of atoms
- Electron shells and the sizes of ions

The Chemical Bond

Covalent Bond (GC)

- Lewis Electron Dot formulas
 - o Resonance structures
 - o Formal charge
 - o Lewis acids and bases
- Partial ionic character
 - o Role of electronegativity in determining charge distribution
 - o Dipole moment
- σ and π bonds
 - Hybrid orbitals: sp^3 , sp^2 , sp and respective geometries
 - Valence shell electron pair repulsion and the shapes of molecules (e.g., NH3, H2O, CO2)
 - o Structural formulas for molecules involving
 - H, C, N, O, F, S, P, Si, Cl
 - o Delocalized electrons and resonance in ions and molecules
- Multiple bonding
 - o Effect on bond length and bond energies
 - o Rigidity in molecular structure

Intermolecular Forces

Liquid Phase - Intermolecular Forces (GC)

- Hydrogen bonding
- Dipole Interactions
- Van der Waals' Forces (London dispersion forces)

Stoichiometry

Stoichiometry (GC)

- Molecular weight
- Empirical versus molecular formula
- Metric units commonly used in the context of chemistry
- Description of composition by percent mass
- Mole concept, Avogadro's number NA
- Definition of density
- Oxidation number
 - o Common oxidizing and reducing agents
 - o Disproportionation reactions
- Description of reactions by chemical equations
 - o Conventions for writing chemical equations
 - o Balancing equations, including redox equations
 - Limiting reactants
 - o Theoretical yields

Thermochemistry

- Endothermic/exothermic reactions (GC)
 - o Enthalpy, H, and standard heats of reaction and formation
 - o Hess' Law of Heat Summation
 - o Bond dissociation energy as related to heats of formation (GC)

The States of Matter

- Coefficient of expansion (PHY)
- Heat of fusion, heat of vaporization
- Phase diagram: pressure and temperature

Chemical Thermodynamics and the Equilibrium State

- Second Law concept of entropy
 - o Entropy as a measure of "disorder"
 - o Relative entropy for gas, liquid, and crystal states
- Free energy: G (GC)
- Spontaneous reactions and ΔG° (GC)
- Bioenergetics/thermodynamics
 - o Free energy / Keq
- Equilibrium constant Relationship of the equilibrium constant and ΔG°
 - Concentration
- Le Châtelier's Principle
 - Endothermic/exothermic reactions
 - o Free energy: G
 - Spontaneous reactions and ΔG°
- Spontaneous reactions and \(\Delta G^2\)
 Equilibrium in reversible chemical reactions
 - Law of Mass Action
 - o Equilibrium Constant
 - o Application of Le Châtelier's Principle
- Relationship of the equilibrium constant and ΔG°

Chemical Kinetics

Rate Processes in Chemical Reactions

Kinetics and Equilibrium (GC)

- Reaction rate
- Dependence of reaction rate on concentration of reactants
 - o Rate law, rate constant
 - o Reaction order
- Rate-determining step
- Dependence of reaction rate upon temperature
 - o Activation energy
- Activated complex or transition state
 - Interpretation of energy profiles showing energies of reactants, products, activation energy, and ΔH for the reaction
 - o Use of the Arrhenius Equation
- Kinetic control versus thermodynamic control of a reaction
- Catalysts

Solutions

lons in Solutions (GC, BC)

- Anion, cation: common names, formulas and charges for familiar ions (e.g., NH⁴⁺ ammonium, PO₄³⁻ phosphate, SO₄²⁻ sulfate)
 - Hydration, the hydronium ion

Solubility (GC)

- Units of concentration (e.g., molarity)
- Solubility product constant; the equilibrium expression *K*sp
- Common-ion effect, its use in laboratory separations
 - o Complex ion formation
 - o Complex ions and solubility
 - o Solubility and pH
 - Osmosi
- Colligative properties; osmotic pressure (GC)
- Henry's Law (GC)

Acids and Bases

Acid/Base Equilibria (GC, BC)

- Brønsted–Lowry definition of acid, base
- Ionization of water
 - o Kw, its approx. value $(Kw = [H][OH] = 10 \text{ at } 25^{\circ}C$, 1 atm)
 - o Definition of pH: pH of pure water
- Conjugate acids and bases (e.g., NH4+ and NH3)
- Strong acids and bases (e.g., nitric, sulfuric)
- Weak acids and bases (e.g., acetic, benzoic)
 - o Dissociation of weak acids and bases with or without added salt
 - o Hydrolysis of salts of weak acids or bases
 - o Calculation of pH of solutions of salts of weak acids or bases
- Equilibrium constants *K*a and *K*b: p*K*a, p*K*b
- Buffers
 - o Definition and concepts (common buffer systems)
 - Influence on titration curves

Titration (GC)

- Indicators
- Neutralization
- Interpretation of the titration curves

Coordination Chemistry

- o Complex ion formation
- o Complex ions and solubility

Oxidation-Reduction & Electrochemistry

- Oxidation number
 - o Common oxidizing and reducing agents
 - o Disproportionation reactions
- Redox titration

Electrochemistry

■ Biological oxidation-reduction

- o Half-reactions
- o Soluble electron carriers
- o Flavoproteins
- Concentration cell: direction of electron flow, Nernst equation
- Electrolytic cell
 - o Electrolysis
 - o Anode, cathode
 - o Electrolyte
 - Faraday's Law relating amount of elements deposited (or gas l iberated) at an electrode to current
 - o Electron flow; oxidation, and reduction at the electrodes
- Galvanic or Voltaic cells
 - Half-reactions
 - o Reduction potentials; cell potential
 - o Direction of electron flow

- Concentration cell
- Batteries
 - o Electromotive force, Voltage
 - o Lead-storage batteries
 - Nickel-cadmium batteries

Specialized Cell - Nerve Cell (BIO)

- Myelin sheath, Schwann cells, insulation of axon
- Nodes of Ranvier: propagation of nerve impulse along axon

Organic Chemistry

Stereochemistry

- Stereochemistry of covalently bonded molecules (OC)
 - Isomers
- Structural isomers
- Stereoisomers (e.g., diastereomers, enantiomers, cis/trans isomers)
- Conformational isomers
 - o Polarization of light, specific rotation
 - o Absolute and relative configuration
- Conventions for writing R and S forms
- Conventions for writing E and Z forms
- Cyclic structure and conformations of hexoses
- Epimers and anomers
- Racemic mixtures, separation of enantiomers (OC)

Molecular Structure and Absorption Spectra (OC)

- Infrared region
 - o Intramolecular vibrations and rotations
 - Recognizing common characteristic group absorptions, fingerprint region
- Visible region (GC)
 - Absorption in visible region gives complementary color (e.g., carotene)
 - o Effect of structural changes on absorption (e.g., indicators)
- Ultraviolet region
 - o π -Electron and non-bonding electron transitions
 - Conjugated systems
- NMR spectroscopy
 - o Protons in a magnetic field; equivalent protons
 - Spin-spin splitting

Reactions of Alcohols and Ethers Alcohols (OC)

- Description
 - o Nomenclature
 - o Physical properties (acidity, hydrogen bonding)
- Important reactions
 - Oxidation
 - Substitution reactions: SN1 or SN2
 - o Protection of alcohols
 - o Preparation of mesylates and tosylates

Reactions of Aldehydes and Ketones Aldehydes and Ketones (OC)

- Description
 - Nomenclature
 - Physical properties
 - Important reactions
- Nucleophilic addition reactions at C=O bond
 - o Acetal, hemiacetal
 - o Imine, enamine
 - o Hydride reagents
 - o Cyanohydrin
- Reactions at adjacent positions: enolate chemistry
 - Keto-enol tautomerism (α-racemization)
 - o Aldol condensation, retro-aldol
 - o Kinetic versus thermodynamic enolate
- Oxidation of aldehydes
- General principles
 - Effect of substituents on reactivity of C=O; steric hindrance
 - Acidity of α-H; carbanions

Reactions of Carboxylic Acids and Derivatives Carboxylic Acids (OC)

- Description
 - Nomenclature

- Physical properties
- Important reactions
 - o Carboxyl group reactions
- Amides (and lactam), esters (and lactone), anhydride formation
- Reduction
- Decarboxylation
- Reactions at 2-position, substitution

Acid Derivatives (Anhydrides, Amides, Esters) (OC)

- Description
 - o Nomenclature
 - o Physical properties
- Important reactions
 - o Nucleophilic substitution
 - o Transesterification
 - o Hydrolysis of amides
- General principles
 - o Relative reactivity of acid derivatives
 - o Steric effects
 - o Electronic effects
 - o Strain (e.g., β-lactams)

Reactions of Organic Phosphorus Compounds

- Phosphoryl group transfers and ATP
 - o ATP hydrolys is $\Delta G \ll 0$
 - o ATP group transfers

Reactions of Organic Sulfur Compounds

- · Sulfur linkage for cysteine and cystine
- Preparation of mesylates and tosylates
- Phenols
 - Oxidation and reduction (e.g., hydroquinones, ubiquinones): biological 2e⁻ redox centers

Polycyclic and Heterocyclic Aromatic Compounds

Biological aromatic heterocycles

Biology

Proteins

Amino Acids (BC, OC)

- Description
 - o Absolute configuration at the α position
 - o Amino acids as dipolar ions
 - Classifications
 - Acidic or basic
- Reactions
- Hydrophobic or hydrophilic
 - o Sulfur linkage for cysteine and cystine
 - o Peptide linkage: polypeptides and proteins
 - o Hydrolysis

Protein Structure (BIO, BC, OC)

- Structure
 - o 1° structure of proteins
 - o 2° structure of proteins
 - 3° structure of proteins; role of proline, cystine, hydrophobic bonding
 - o 4° structure of proteins (BIO,BC)
- Conformational stability
 - Denaturing and folding
 - o Hydrophobic interactions
 - o Solvation layer (entropy) (BC)
- Separation techniques
 - Isoelectric point
 - o Electrophoresis

Non-Enzymatic Protein Function (BIO, BC)

- Binding (BC)
- Immune system
- Motors

Enzyme Structure and Function (BIO, BC)

- Function of enzymes in catalyzing biological reactions
- Enzyme classification by reaction type
- Reduction of activation energy
- Substrates and enzyme specificity
- Active Site Model

- Induced-fit Model
- Mechanism of catalysis
 - Cofactors
 - o Coenzymes
 - o Water-soluble vitamins
- Effects of local conditions on enzyme activity

Control of Enzyme Activity (BIO, BC)

- Kinetics
 - General (catalysis)
 - o Michaelis-Menten
 - Cooperativity
- Feedback regulation
 - Inhibition-types
 - o Competitive
 - o Non-competitive
 - o Mixed (BC)
 - o Uncompetitive (BC)
- Regulatory enzymes
 - o Allosteric enzymes
 - o Covalently-modified enzymes
 - o Zymogen

Carbohydrates

Carbohydrates (BC, OC)

- Description
 - o Nomenclature and classification, common names
 - Absolute configuration
 - o Cyclic structure and conformations of hexoses
 - o Epimers and anomers
- Hydrolysis of the glycoside linkage
- Monosaccharides
- Disaccharides
- Polysaccharides
- Hydrolysis of the glycoside linkage
- Keto-enol tautomerism of monosaccharides
- Disaccharides (BC)
- Polysaccharides (BC)

Nucleic Acids

Nucleic Acid Structure and Function (BIO, BC)

- Description
- Nucleotides and nucleosides
 - o Sugar phosphate backbone
- o Pyrimidine, purine residues
- Deoxyribonucleic acid (DNA): double helix, Watson-Crick model
- Base pairing specificity: A with T, G with C
- Function in transmission of genetic information (BIO)
- DNA denaturation, reannealing, hybridization
- Chemistry (BC)
- Other functions (BC)

Linide

Metabolism of Fatty Acids and Proteins (BIO, BC)

- Description of fatty acids (BC)
- Digestion, mobilization, and transport of fats

Lipids (BC, OC)

- Description, Types
 - o Structural
- Triacyl glycerols
 - Storage
- Free fatty acids: saponification
- Phospholipids and phosphatids
- Sphingolipids (BC)
- Waxes
- Terpenes and terpenoids
- Signals/cofactors
 - o Fat-soluble vitamins
 - Steroids
 - o Prostaglandins (BC)

Biological Membranes

Plasma Membrane (BIO, BC)

- General function in cell containment
- Composition of membranes
 - o Lipid components (BIO, BC, OC)
- Phospholipids (and phosphatids)
- Steroids
- Waxes
- Protein components

- Fluid mosaic model
- Membrane dynamics
- Solute transport across membranes
 - o Thermodynamic considerations

 - o Colligative properties; osmotic pressure (GC)
 - Passive transport
 - o Active transport
 - Sodium/potassium pump
 - o Membrane channels
- Membrane potential
- Membrane receptors
- Exocytosis and endocytosis
- Intercellular junctions (BIO)
 - o Gap junctions
 - o Tight junctions
 - o Desmosomes

Biosignalling (BC)

- Gated ion channels
 - o Voltage gated
 - o Ligand gated
- Receptor enzymes
- G protein-coupled receptors

The Prokaryotic Cell

- Lack of nuclear membrane and mitotic apparatus
- Lack of typical eukaryotic organelles
- Presence of cell wall in bacteria
- Flagellar propulsion, mechanism

Growth and Physiology of Prokaryotic Cells (BIO)

- Reproduction by fission
- High degree of genetic adaptability, antibiotic resistance
- Exponential growth
- Existence of anaerobic and aerobic variants
- Parasitic and symbiotic
- Chemotaxis

Genetics of Prokaryotic Cells (BIO)

- Existence of plasmids, extragenomic DNA
- Transformation: incorporation into bacterial genome of DNA fragments from external medium
- Conjugation
- Transposons (also present in eukaryotic cells)

The Eukaryotic Cell

Cell Theory (BIO)

- History and development Impact on biology

Membrane-Bound Organelles and Defining Characteristics of **Eukaryotic Cells (BIO)**

- Defining characteristics of eukaryotic cells:
 - o membrane bound nucleus
 - o presence of organelles
 - o mitotic division
- - o Compartmentalization, storage of genetic information
 - o Nucleolus: location and function
 - o Nuclear envelope, nuclear pores
- Mitochondria
 - o Site of ATP production
 - o Inner and outer membrane structure (BIO, BC)
 - o Self-replication
- Lysosomes: membrane-bound vesicles containing hydrolytic

enzymes

- Endoplasmic reticulum
 - Rough and smooth components
 - o Rough endoplasmic reticulum site of ribosomes
 - o Double membrane structure
 - o Role in membrane biosynthesis
 - o Role in biosynthesis of secreted proteins
- Golgi apparatus: general structure and role in packaging and

secretion

- Peroxisomes: organelles that collect peroxides
- Cytoskeleton (BIO)
 - o General function in cell support and movement
 - o Microfilaments: composition, role in cleavage and contractility
 - o Microtubules: composition and role in support and transport
 - o Intermediate filaments, role in support

- o Composition and function of cilia and flagella
- o Centrioles, microtubule organizing centers

Bioenergetics and Cellular Respiration Principles of Bioenergetics (BC)

- Bioenergetics/thermodynamics
 - o Free energy/Keq
 - o Concentration
- Phosphorylation/ATP
 - o ATP hydrolysis $\Delta G \ll 0$
 - o ATP group transfers
- Biological oxidation-reduction
 - o Half-reactions
 - o Soluble electron carriers
 - o Flavoproteins

Glycolysis, Gluconeogenesis, and the Pentose Phosphate Pathway (BIO, BC)

- Glycolysis (aerobic), substrates and products
- o Feeder pathways:glycogen, starch metabolism
- Fermentation (anaerobic glycolysis)
- Gluconeogenesis (BC)
- Pentose phosphate pathway (BC)
- Net molecular and energetic results of respiration processes

Principles of Metabolic Regulation (BC)

- Regulation of metabolic pathways (BIO, BC)
- o Maintenance of a dynamic steady state
- Regulation of glycolysis and gluconeogenesis
- Metabolism of glycogen
- Regulation of glycogen synthesis and breakdown
 - o Allosteric and hormonal control
- Analysis of metabolic control

Citric Acid Cycle (BIO, BC)

- Acetyl-CoA production (BC)
- Reactions of the cycle, substrates and products
- Regulation of the cycle
- Net molecular and energetic results of respiration processes

Oxidative Phosphorylation (BIO, BC)

- Electron transport chain and oxidative phosphorylation
 - o substrates and products
 - o general features of the pathway
- Electron transfer in mitochondria
 - o NADH. NADPH
 - o Flavoproteins
 - o Cytochromes
- ATP synthase, chemiosmotic coupling
 - o Proton motive force
- Net molecular and energetic results of respiration processes
- Regulation of oxidative phosphorylation
- Mitochondria, apoptosis, oxidative stress (BC)

Integration of Metabolism

- Oxidation of fatty acids
 - o Saturated fats
 - o Unsaturated fats
- Ketone bodies (BC)
- Anabolism of fats (BIO)
- Non-template synthesis: biosynthesis of lipids and polysaccharides (BIO)
- Metabolism of proteins (BIO)

Hormonal Regulation and Integration of Metabolism (BC)

- Higher level integration of hormone structure and function
- Tissue specific metabolism
- Hormonal regulation of fuel metabolism
- Obesity and regulation of body mass

Gene Expression

Genetic Code (BIO)

- Central Dogma: DNA → RNA → protein
- The triplet code
- Codon-anticodon relationship
- Degenerate code, wobble pairing
- Missense, nonsense codons
- Initiation, termination codons Messenger RNA (mRNA)

Transcription (BIO)

- Transfer RNA (tRNA); ribosomal RNA (rRNA)
- Mechanism of transcription
- mRNA processing in eukaryotes, introns, exons
- Ribozymes, spliceosomes, small nuclear ribonucleoproteins

(snRNPs), small nuclear RNA (snRNAs)

Functional and evolutionary importance of introns

Translation (BIO)

- Roles of mRNA, tRNA, rRNA
- Role and structure of ribosomes
- Initiation, termination co-factors
- Post-translational modification of proteins

Eukaryotic Chromosome Organization (BIO)

- Chromosomal proteins
- Single copy vs. repetitive DNA
- Supercoiling
- Heterochromatin vs. euchromatin
- Telomeres, centromeres

Genetics of Prokaryotic Cells (BIO)

- Existence of plasmids, extragenomic DNA
- Transformation: incorporation into bacterial genome of DNA

fragments from external medium

- Conjugation
- Transposons (also present in eukaryotic cells)

Control of Gene Expression in Prokaryotes (BIO)

- Operon Concept, Jacob–Monod Model
- Gene repression in bacteria
- Positive control in bacteria

Control of Gene Expression in Eukaryotes (BIO)

- Transcriptional regulation
- DNA binding proteins, transcription factors
- Gene amplification and duplication
- Post-transcriptional control, basic concept of splicing (introns,

exons)

- Cancer as a failure of normal cellular controls, oncogenes, tumor suppressor genes
- Regulation of chromatin structure
- DNA methylation
- Role of non-coding RNAs

DNA Replication and Cellular Reproduction

DNA Replication (BIO)

- Mechanism of replication: separation of strands, specific coupling of free nucleic acids
- Semi-conservative nature of replication
- Specific enzymes involved in replication
- Origins of replication, multiple origins in eukaryotes
- Replicating the ends of DNA molecules

Repair of DNA (BIO)

- Repair during replication
- Repair of mutations

Mitosis (BIO)

Mitotic process: prophase, metaphase, anaphase, telophase,

interphase

- Mitotic structures
 - o Centrioles, asters, spindles
 - o Chromatids, centromeres, kinetochores
 - o Nuclear membrane breakdown and reorganization
 - o Mechanisms of chromosome movement
- Phases of cell cycle: G0, G1, S, G2, M
- Growth arrest
- Control of cell cycle
- Loss of cell cycle controls in cancer cells

Biosignalling (BC)

Oncogenes, apoptosis

Mendelian Genetics

Mendelian Concepts (BIO)

- Phenotype and genotype
- Gene
- Locus
- Allele: single and multiple
- Homozygosity and heterozygosity
- Wild-type
- Recessiveness
- Complete dominance
- Co-dominance
- Incomplete dominance, leakage, penetrance, expressivity
- Hybridization: viability
- Gene pool

Analytic Methods (BIO)

- Hardy–Weinberg Principle
- Testcross (Backcross; concepts of parental, F1, and F2 generations)
- Gene mapping: crossover frequencies

Biometry: statistical methods

Recombination and Mutation

Meiosis and Other Factors Affecting Genetic Variability (BIO)

- Significance of meiosis
- Important differences between meiosis and mitosis
- Segregation of genes
 - o Independent assortment
 - o Linkage
 - o Recombination
 - o Single crossovers
 - o Double crossovers
 - Synaptonemal complex
 - Tetrad
 - Sex-linked characteristics
 - o Very few genes on Y chromosome
 - o Sex determination
 - o Cytoplasmic/extranuclear inheritance
- Mutation
 - o General concept of mutation error in DNA sequence
 - Types of mutations: random, translation error, transcription error, base substitution, inversion, addition, deletion, translocation, mispairing
 - o Advantageous vs. deleterious mutation
 - Inborn errors of metabolism
 - Relationship of mutagens to carcinogens
- Genetic drift
 - Synapsis or crossing-over mechanism for increasing genetic

diversity

The Molecular Biology Laboratory

Separations and Purifications (OC, BC) Extraction: distribution of solute between two immiscible solvents

- Distillation
- Chromatography
 - o Basic principles involved in separation process
- Column chromatography, gas-liquid chromatography
- High pressure liquid chromatography
 - o Paper chromatography
 - o Thin-layerchromatography
- Separation and purification of peptides and proteins (BC)
 - o Electrophoresis
 - o Quantitative analysis
 - Chromatography
 - Size-exclusionIon-exchange
 - o Affinity

Recombinant DNA and Biotechnology (BIO)

- Gene cloning
- Restriction enzymes
- DNA libraries
- Generation of cDNA
- Hybridization
- Expressing cloned genes
- Polymerase chain reaction
- Gel electrophoresis and Southern blotting
- DNA sequencing
- Analyzing gene expression
- Determining gene function
- DeterminingStem cells
- Stem cens
 Practical applications of DNA technology: medical applications,

human gene therapy, pharmaceuticals, forensic evidence, environmental cleanup, agriculture

Safety and ethics of DNA technology

Viruses

Virus Structure (BIO)

General structural characteristics (nucleic acid and protein,

enveloped and nonenveloped)

- Lack organelles and nucleus
- Structural aspects of typical bacteriophage
- Genomic content RNA or DNA
- Size relative to bacteria and eukaryotic cells

Viral Life Cycle (BIO)

- Self-replicating biological units that must reproduce within specific host cell
- Generalized phage and animal virus life cycles
- o Attachment to host, penetration of cell membrane or cell wall,

and entry of viral genetic material

- o Use of host synthetic mechanism to replicate viral components
- o Self-assembly and release of new viral particles
- Transduction: transfer of genetic material by viruses
- Retrovirus life cycle: integration into host DNA, reverse

o HIV transcriptase,

Prions and viroids: subviral particles

Bacteria and Archaea

Classification and Structure of Prokaryotic Cells (BIO)

- Prokaryotic domains
 - o Archaea
 - Bacteria
- Major classifications of bacteria by shape
 - o Bacilli (rod-shaped)
 - o Spirilli (spiral-shaped)
 - o Cocci (spherical)

Animal Development and Embryology

Reproductive System (BIO)

- Gametogenesis by meiosis
- Ovum and sperm
 - o Differences information
 - o Differences in morphology
 - o Relative contribution to next generation
- Reproductive sequence: fertilization; implantation; development;

Embryogenesis (BIO)

- Stages of early development (order and general features of each)
 - o Fertilization
 - o Cleavage
 - o Blastula formation
 - Gastrulation
- First cell movements
- Formation of primary germ layers (endoderm, mesoderm, ectoderm)
 - o Neurulation
- Major structures arising out of primary germ layers
- Neural crest
- Environment–gene interaction in development

Mechanisms of Development (BIO)

- · Cell specialization
 - o Determination
 - o Differentiation
 - o Tissue types
- Cell-cell communication in development
- Cell migration
- Pluripotency: stem cells
- Gene regulation in development
- Programmed cell death
- Existence of regenerative capacity in various species
- Senescence and aging

Mammalian Tissues and Histology

Tissues Formed From Eukaryotic Cells (BIO)

- Epithelial cells
- Connective tissue cells

The Nervous System

Nervous System: Structure and Function (BIO)

- Major Functions
 - o High level control and integration of body systems
 - o Adaptive capability to external influences
- Organization of vertebrate nervous system
- Sensor and effector neurons
- Sympathetic and parasympathetic nervous systems: antagonistic control
- Reflexes
 - o Feedback loop, reflex arc
 - o Role of spinal cord and supraspinal circuits
- Integration with endocrine system: feedback control

Nerve Cell (BIO)

- Cell body: site of nucleus, organelles
- Dendrites: branched extensions of cell body
- Axon: structure and function
- Myelin sheath, Schwann cells, insulation of axon
- Nodes of Ranvier: propagation of nerve impulse along axon
- Synapse: site of impulse propagation between cells
- Synaptic activity: transmitter molecules
- Resting potential: electrochemical gradient

- Action potential
 - o Threshold, all-or-none
 - o Sodium/potassium pump
- · Excitatory and inhibitory nerve fibers: summation, frequency of

firing

Glial cells, neuroglia

Sensory Systems

Vision (PSY, BIO)

- Structure and function of the eye
- Visual processing
 - o Visual pathways in the brain
- o Parallel processing (PSY)
- o Feature detection (PSY)

Hearing (PSY, BIO)

- Structure and function of the ear
- Auditory processing (e.g., auditory pathways in the brain)
- Sensory reception by hair cells

Other Senses (PSY, BIO)

- Somatosensation (e.g., pain perception)
- Taste (e.g., taste buds/chemoreceptors that detect specific chemicals)
- Smell
 - o Olfactory cells/chemoreceptors that detect specific chemicals
 - o Pheromones (BIO)
 - o Olfactory pathways in the brain (BIO)
- Kinesthetic sense (PSY)
- Vestibular sense

The Endocrine System

Endocrine System: Hormones and Their Sources (BIO)

• Function of endocrine system: specific chemical control at cell, tissue, and organ level

- Definitions of endocrine gland, hormone
- Major endocrine glands: names, locations, products
- Major types of hormones
- Neuroendrocrinology relation between neurons and hormonal

Endocrine System: Mechanisms of Hormone Action (BIO)

- Cellular mechanisms of hormone action
- Transport of hormones: blood supply
- Specificity of hormones: target tissue
- Integration with nervous system: feedback control Regulation by second messengers

Hormonal Regulation and Integration of Metabolism (BC)

- Higher level integration of hormone structure and function
- Tissue specific metabolism
- Hormonal regulation of fuel metabolism
- Obesity and regulation of body mass

The Musculoskeletal System

Muscle System (BIO)

- Important functions
 - Support : mobility
 - o Peripheral circulatory assistance
 - o Thermoregulation (shivering reflex)
- Structure of three basic muscle types: striated, smooth, cardiac
- Muscle structure and control of contraction
 - o T-tubule system
 - o Contractile apparatus
 - o Sarcoplasmic reticulum
- o Fiber type
- o Contractile velocity of different muscle types
- Regulation of cardiac muscle contraction
- Oxygen debt: fatigue
- Nervous control
 - o Motor neurons
 - o Neuromuscular junction, motor end plates
 - o Sympathetic and parasympathetic innervation
 - o Voluntary and involuntary muscles

Specialized Cell - Muscle Cell (BIO)

- Structural characteristics of striated, smooth, and cardiac muscle
- Abundant mitochondria in red muscle cells: ATP source
- Organization of contractile elements:
 - o actin and myosin filaments
 - o crossbridges o sliding filament model
- Sarcomeres: "I" and "A" bands, "M" and "Z" lines, "H" zone
- Presence of troponin and tropomyosin

Calcium regulation of contraction

Skeletal System (BIO)

- Functions
 - o Structural rigidity and support
 - o Calcium storage
 - o Physical protection
- Skeletal structure
 - Specialization of bone types, structures
 - o Joint structures
 - o Endoskeleton vs. exoskeleton
- Bone structure
 - o Calcium/protein matrix
 - o Cellular composition of bone
- Cartilage: structure and function
- Ligaments, tendons
- Endocrine control

The Cardiovascular System

Circulatory System (BIO)

• Functions: circulation of oxygen, nutrients, hormones,

ions and fluids, removal of metabolic waste

- Role in thermoregulation
- Four-chambered heart: structure and function
- Endothelial cells
- Systolic and diastolic pressure
- Pulmonary and systemic circulation
- Arterial and venous systems (arteries, arterioles, venules, veins)
 - o Structural and functional differences
 - o Pressure and flow characteristics
- Capillary beds
 - o Mechanisms of gas and solute exchange
 - o Mechanism of heat exchange
 - o Source of peripheral resistance
- Nervous and endocrine control

Blood

- Composition of blood
 - o Plasma, chemicals, bloodcells
 - o Erythrocyte production and destruction; spleen, bone marrow
 - o Regulation of plasma volume
- Coagulation, clotting mechanisms
- Oxygen transport by blood
 - o Hemoglobin, hematocrit
 - o Oxygen content
 - o Oxygen affinity
- Carbon dioxide transport and level in blood

The Respiratory SystemRespiratory System (BIO)

- General function
 - o Gas exchange, thermoregulation
 - o Protection against disease : particulate matter
- Structure of lungs and alveoli
- Breathing mechanisms
 - o Diaphragm, rib cage, differential pressure
 - o Resiliency and surface tension effects
- Thermoregulation: nasal and tracheal capillary beds; evaporation, panting
- Particulate filtration: nasal hairs, mucus/cilia system in lungs
- Alveolar gas exchange
 - o Diffusion, differential partial pressure
 - o Henry's Law(GC)
- pH control
- Regulation by nervous control CO₂ sensitivity

The Lymphatic System and Immunity Lymphatic System (BIO)

- Structure of lymphatic system
- Major functions
 - o Equalization of fluid distribution
 - o Transport of proteins and large glycerides
 - o Production of lymphocytes involved in immune reactions
 - o Return of materials to the blood

Immune System (BIO)

- Innate (non-specific) vs. adaptive (specific) immunity
- Adaptive immune system cells
 - $\circ \ \, \text{T-lymphocytes}$
 - o B-lymphocytes
- Innate immune system cells

- Macrophages
- o Phagocytes
- Tissues
 - o Bonemarrow
 - o Spleen
 - o Thymus
 - Lymph nodes
- Concept of antigen and antibody
- Antigen presentation
- Clonal selection
- Antigen-antibody recognition
- Structure of antibody molecule
- Recognition of self vs. non-self, autoimmune diseases
- Major histocompatibility complex

The Urinary System

Excretory System (BIO)

- Roles in homeostasis
 - o Blood pressure
 - o Osmoregulation
 - o Acid-basebalance
 - o Removal of soluble nitrogenous waste
- Kidney structure
 - o Cortex
 - o Medulla
- Nephron structure
 - o Glomerulus
 - o Bowman's capsule
 - o Proximal tubule
 - Loop of Henle
 - o Distal tubule
 - o Collecting duct
- Formation of urine
 - o Glomerular filtration
 - o Secretion and reabsorption of solutes
 - o Concentration of urine
 - o Counter-current multiplier mechanism
- Storage and elimination: ureter, bladder, urethra
- Osmoregulation: capillary reabsorption of H₂O, amino acids, glucose, ions
- Muscular control: sphincter muscle

The Digestive System and Nutrition Digestive System (BIO)

- Ingestion
 - o Saliva as lubrication and source of enzymes
 - o Ingestion; esophagus, transport function
- Stomach
 - Storage and churning of food
 - o Low pH, gastric juice, mucal protection against self-destruction
 - Production of digestive enzymes, site of digestion
 - Structure(gross)
- Liver
 - Structural relationship of liver within gastrointestinal system
 - o Production of bile
 - o Role in blood glucose regulation, detoxification
- Rile
 - Storage in gall bladder
 - o Function
- Pancreas
 - o Production of enzymes
 - o Transport of enzymes to small intestine
- Small Intestine
 - o Absorption of food molecules and water
 - Function and structure of villi
 - Production of enzymes, site of digestion Neutralization of stomach acid
 - o Structure (anatomic subdivisions)
 - Large Intestine
 o Absorption of water
 - o Bacterial flora
 - o Structure (gross)
- Rectum: storage and elimination of waste, feces
- Muscular control
 - o Peristalsis
- Endocrine control

- o Hormones
- o Target tissues
- Nervous control: the enteric nervous system

The Reproductive System

Reproductive System (BIO)

- Male and female reproductive structures and their functions
 - o Gonads
 - o Genitalia
 - o Differences between male and female structures
- Hormonal control of reproduction
 - o Male and female sexual development
 - o Female reproductive cycle
 - o Pregnancy, parturition, lactation
 - o Integration with nervous control

Skin

Skin System (BIO)

- Structure
 - o Layer differentiation, celltypes
 - o Relative impermeability to water
- Functions in homeostasis and osmoregulation
- Functions in thermoregulation
 - o Hair, erectile musculature
 - o Fat layer for insulation
 - o Sweat glands, location in dermis
 - o Vasoconstriction and vasodilation in surface capillaries
- Physical protection
 - o Nails, calluses, hair
 - o Protection against abrasion, disease organisms
- Hormonal control: sweating, vasodilation, and vasoconstriction

Evolution

Evolution (BIO)

- Natural selection
 - Fitness concept
 - o Selection by differential reproduction
 - o Concepts of natural and group selection
 - Evolutionary success as increase in percent representation in the gene pool of the next generation
- Speciation
 - o Polymorphism
 - o Adaptation and specialization
 - o Inbreeding
 - o Outbreeding
 - o Bottlenecks
- Evolutionary time as measured by gradual random changes in

genome

o Genetic drift